Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069275

RESUMO

Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments. A comparative analysis is conducted of the results obtained using these methods for the cytosol, nucleus, endo-/sarcoplasmic reticulum, and mitochondria, as well as their biological consistency. Special attention is given to the limitations, possible sources of errors and ambiguities of the sensor's responses. The issue of biological temperature limits in cells and organelles is considered. It is concluded that the elaboration of experimental protocols for ultralocal temperature measurements that take into account both the characteristics of biological systems, as well as the properties and limitations of each type of sensor is of critical importance for the generation of reliable results and further progress in this field.


Assuntos
Mitocôndrias , Termometria , Mitocôndrias/metabolismo , Termometria/métodos , Organelas/metabolismo , Temperatura , Citosol/metabolismo , Temperatura Alta
2.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830628

RESUMO

Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Subunidades Proteicas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina
3.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298189

RESUMO

The opening of the permeability transition pore (PTP) in mitochondria is a key event in the initiation of cell death in various pathologic states, including ischemia/reperfusion. The activation of K+ transport into mitochondria protects cells from ischemia/reperfusion. However, the role of K+ transport in PTP regulation is unclear. Here, we studied the role of K+ and other monovalent cations in the regulation of the PTP opening in an in vitro model. The registration of the PTP opening, membrane potential, Ca2+-retention capacity, matrix pH, and K+ transport was performed using standard spectral and electrode techniques. We found that the presence of all cations tested in the medium (K+, Na+, choline+, and Li+) strongly stimulated the PTP opening compared with sucrose. Several possible reasons for this were examined: the effect of ionic strength, the influx of cations through selective and non-selective channels and exchangers, the suppression of Ca2+/H+ exchange, and the influx of anions. The data obtained indicate that the mechanism of PTP stimulation by cations includes the suppression of K+/H+ exchange and acidification of the matrix, which facilitates the influx of phosphate. Thus, the K+/H+ exchanger and the phosphate carrier together with selective K+ channels compose a PTP regulatory triad, which might operate in vivo.


Assuntos
Mitocôndrias Hepáticas , Poro de Transição de Permeabilidade Mitocondrial , Humanos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cátions Monovalentes/metabolismo , Isquemia/metabolismo , Cálcio/metabolismo , Permeabilidade
4.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681269

RESUMO

Pioglitazone (PIO) is an insulin-sensitizing antidiabetic drug, which normalizes glucose and lipid metabolism but may provoke heart and liver failure and chronic kidney diseases. Both therapeutic and adverse effects of PIO can be accomplished through mitochondrial targets. Here, we explored the capability of PIO to modulate the mitochondrial membrane potential (ΔΨm) and the permeability transition pore (mPTP) opening in different models in vitro. ΔΨm was measured using tetraphenylphosphonium and the fluorescent dye rhodamine 123. The coupling of oxidative phosphorylation was estimated polarographically. The transport of ions and solutes across membranes was registered by potentiometric and spectral techniques. We found that PIO decreased ΔΨm in isolated mitochondria and intact thymocytes and the efficiency of ADP phosphorylation, particularly after the addition of Ca2+. The presence of the cytosolic fraction mitigated mitochondrial depolarization but made it sustained. Carboxyatractyloside diminished the PIO-dependent depolarization. PIO activated proton transport in deenergized mitochondria but not in artificial phospholipid vesicles. PIO had no effect on K+ and Ca2+ inward transport but drastically decreased the mitochondrial Ca2+-retention capacity and protective effects of adenine nucleotides against mPTP opening. Thus, PIO is a mild, partly ATP/ADP-translocase-dependent, uncoupler and a modulator of ATP production and mPTP sensitivity to Ca2+ and adenine nucleotides. These properties contribute to both therapeutic and adverse effects of PIO.

5.
FASEB J ; 35(8): e21764, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245631

RESUMO

The size of the permeability transition pore (PTP) is accepted to be ≤1.5 kDa. However, different authors reported values from 650 to 4000 Da. The present study is focused on the variability of the average PTP size in and between mitochondrial samples, its reasons and relations with PTP dynamics. Measurement of PTP size by the standard method revealed its 500 Da-range variability between mitochondrial samples. Sequential measurements in the same sample showed that the PTP size tends to grow with time and Ca2+ concentration. Selective damage to the mitochondrial outer membrane (MOM) reduced the apparent PTP size by ~200-300 Da. Hypotonic and hypertonic osmotic shock and partial removal of the MOM with the preservation of the mitochondrial inner membrane intactness decreased the apparent PTP size by ~50%. We developed an approach to continuous monitoring of the PTP size that revealed the existence of stable PTP states with different pore sizes (~700, 900-1000, ~1350, 1700-1800, and 2100-2200 Da) and transitions between them. The transitions were accelerated by elevating the Ca2+ concentration, temperature, and osmotic pressure, which demonstrates an increased capability of PTP to accommodate to large molecules (plasticity). Cyclosporin A inhibited the transitions between states. The analysis of PTP size dynamics in osmotically shocked mitochondria and mitoplasts confirmed the importance of the MOM for the stabilization of PTP structure. Thus, this approach provides a new tool for PTP studies and the opportunity to reconcile data on the PTP size and mitochondrial megachannel conductance.


Assuntos
Cálcio/química , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/química , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1863(5): 771-783, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763605

RESUMO

BACKGROUND: The opening of the permeability transition pore (PTP) in mitochondria plays a critical role in the pathogenesis of numerous diseases. Mitochondrial matrix pyridine nucleotides are potent regulators of the PTP, but the role of extramitochondrial nucleotides is unclear. METHODS: The PTP opening was explored in isolated mitochondria and mitochondria in permeabilized differentiated and undifferentiated cells in the presence of added NAD(P)(H) in combination with Mg2+, adenine nucleotides (AN), and the inhibitors of AN translocase (ANT), voltage-dependent anion channel (VDAC), and cyclophilin D. RESULTS: Added NAD(H) and AN, but not NADP(H), inhibited the PTP opening with comparable potency. PTP suppression required neither NAD(H) oxidation nor reduction. The protective effects of NAD(H) and cyclosporin A were synergistic, and the effects of NAD(H) and millimolar AN were additive. The conformation-specific ANT inhibitors were unable to cancel the protective effect of NADH even under total ANT inhibition. Besides, NAD(H) activated the efflux of mitochondrial AN via ANT. VDAC ligand (Mg2+) and blockers (G3139 and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) potentiated and attenuated the protective effect of NAD(H), respectively. However, in embryonic and cancer (undifferentiated) cells, in contrast to isolated differentiated hepatocytes and cardiocytes, the suppression of PTP opening by NADH was negligible though all cells tested possessed a full set of VDAC isoforms. CONCLUSIONS: The study revealed a novel mechanism of PTP regulation by external (cytosolic) NAD(H) through the allosteric site in the OM or the intermembrane space. GENERAL SIGNIFICANCE: The mechanism might contribute to the resistance of differentiated cells under different pathological conditions including ischemia/reperfusion.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos
7.
Free Radic Biol Med ; 124: 473-483, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29966697

RESUMO

The permeabilization of mitochondrial membranes via permeability transition pore opening or by the pore-forming peptide alamethicin causes a flash of superoxide anion (SA) and hydrogen peroxide production and the inhibition of matrix aconitase. It was shown using the SA probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one (MCLA) that the substrates of NAD-dependent dehydrogenases, inhibitors of the respiratory chain, and NAD(P)H at millimolar concentrations suppressed or delayed SA flashes. In the presence of added NADH and NADPH, SA flashes were observed only after considerable oxidation of pyridine nucleotides. The production of SA was maximal at NADPH and NADH redox potentials from -315 to -295 mV and from -325 to -270 mV, respectively, depending on NAD(P)H concentration. SA generation supported by NADPH was severalfold greater than that supported by NADH. In intact mitochondria, NADPH- and NADH-dependent SA generation was negligible. Respiratory substrates at physiological or lower concentrations were incapable of suppressing the NADPH-supported SA flash. These data indicate that, in conditions close to pathophysiological, matrix NADPH oxidoreductase(s), presumably, an adrenodoxin reductase in complex with adrenodoxin, can essentially contribute to SA flashes associated with transient or irreversible permeability transition pore opening or membrane permeabilization by another mechanism.


Assuntos
Membranas Mitocondriais/metabolismo , NADP/metabolismo , Superóxidos/metabolismo , Animais , Imidazóis , Masculino , Permeabilidade , Pirazinas , Piridinas/metabolismo , Ratos , Ratos Wistar
8.
Toxicol Lett ; 275: 108-117, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28478158

RESUMO

Triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol), a widely used antibacterial agent, exerts adverse effects on the organism of mammals. Recent research reviled that triclosan at low micromolar concentrations causes mitochondrial dysfunction in many cell types, but the mechanisms of its effect are not fully understood. Here we show that exposure to triclosan disrupted membrane potential, prevented the calcium uptake-driven high-amplitude mitochondrial swelling, stimulated the respiration in the presence of complex I substrates, and suppressed the ADP-stimulated respiration in the presence of complex II substrate, succinate. Triclosan directly inhibited complex II activity. Similar to the complex II inhibitor thenoyltrifluoroacetone, triclosan induced the oxidation of the cytochromes b566 and b562 and caused the release of mitochondrial superoxide. Opposite to thenoyltrifluoroacetone, triclosan increased superoxide release synergistically with myxothiazol but not with antimycin A, indicating different topology of superoxide-producing sites. We concluded that triclosan is unique by its capability of acting as both a protonophore and an unusual complex II inhibitor, which interferes with the mitochondrial respiration by blocking the electron transfer between ubiquinone at the Qd-binding site and heme b. Our data can provide an insight into the mechanisms of the carcinogenic effect of triclosan in the liver and other tissues.


Assuntos
Anti-Infecciosos Locais/toxicidade , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Superóxidos/metabolismo , Triclosan/toxicidade , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa , Ratos Wistar
9.
J Bioenerg Biomembr ; 49(3): 253-264, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28478591

RESUMO

Chronic alcohol intoxication is associated with increased oxidative stress. However, the mechanisms by which ethanol triggers an increase in the production of reactive oxygen species (ROS) and the role of mitochondria in the development of oxidative stress has been insufficiently studied. The biochemical and proteomic data obtained in the present work suggest that one of the main causes of an increase in ROS generation is enhanced oxidation of glutamate in response to long-term alcohol exposure. In the course of glutamate oxidation, liver mitochondria from alcoholic rats generated more superoxide anion and H2O2 than in the presence of other substrates and more than control organelles. In mitochondria from alcoholic rats, rates of H2O2 production and NAD reduction in the presence of glutamate were almost twice higher than in the control. The proteomic study revealed a higher content of glutamate dehydrogenase in liver mitochondria of rats subjected to chronic alcohol exposure. Simultaneously, the content of mitochondrial catalase decreased compared to control. Each of these factors stimulates the production of ROS in addition to ROS generated by the respiratory chain complex I. The results are consistent with the conclusion that glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria.


Assuntos
Alcoolismo/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Etanol/toxicidade , Ácido Glutâmico/farmacologia , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alcoolismo/enzimologia , Animais , Mitocôndrias Hepáticas/enzimologia , Proteômica/métodos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
10.
Free Radic Biol Med ; 74: 74-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24945955

RESUMO

It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Ciclização de Substratos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Citocromos c/metabolismo , Transporte de Elétrons , Masculino , NAD/metabolismo , Concentração Osmolar , Oxirredução , Paraquat/metabolismo , Ratos , Ratos Wistar , Xenobióticos/metabolismo
11.
Anal Biochem ; 440(2): 189-96, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747529

RESUMO

Intracellular NAD(P)H oxidoreductases are a class of diverse enzymes that are the key players in a number of vital processes. The method we present and validate here is based on the ability of many NAD(P)H oxidoreductases to reduce the superoxide probe lucigenin, which is structurally similar to flavins, to its highly fluorescent water-insoluble derivative dimethylbiacridene. Two modifications of the method are proposed: (i) an express method for tissue homogenate and permeabilized cells in suspensions and (ii) a standard procedure for cells in culture and acute thin tissue slices. The method allows one to assess, visualize, and localize, using fluorescent markers of cellular compartments, multiple NADH and NADPH oxidoreductase activities. The application of selective inhibitors (e.g., VAS2870, a NOX2 inhibitor; plumbagin, a NOX4 inhibitor) allows one to distinguish and compare specific NAD(P)H oxidoreductase activities in cells and tissues and to attribute them to known enzymes. The method is simple, rapid, and flexible. It can be easily adapted to a variety of tasks. It will be useful for investigations of the role of various NAD(P)H oxidoreductases in a number of physiological and pathophysiological processes.


Assuntos
Imagem Molecular/métodos , NADH NADPH Oxirredutases/metabolismo , Animais , Linhagem Celular , Espaço Intracelular/metabolismo , Masculino , Permeabilidade , Ratos , Espectrometria de Fluorescência , Fatores de Tempo
12.
Anal Biochem ; 406(2): 230-2, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20615382

RESUMO

The probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one (MCLA) is widely used for studying the superoxide anion production and the efficiency of antioxidants in biological systems. Here we report that a number of sulfur-containing compounds applied in biochemical and cytological studies are able to suppress MCLA-derived chemiluminescence (MDCL) independent of their capability to scavenge superoxide anion. The most effective MDCL quenchers appeared to be the substances with thiocarbamoyl and thiocarbonyl groups coupled to cyclic molecules and several thiol- and disulfide-containing compounds. The analysis of MDCL kinetics in a xanthine oxidase system allows one to rapidly discriminate between true antioxidants and the quenchers of chemiluminescence.


Assuntos
Antioxidantes/metabolismo , Imidazóis/metabolismo , Medições Luminescentes/métodos , Pirazinas/metabolismo , Compostos de Enxofre/metabolismo , Xantina Oxidase/metabolismo , Imidazóis/química , Pirazinas/química
13.
Anal Biochem ; 395(2): 134-43, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19679097

RESUMO

NAD(P)H oxidoreductases of the outer mitochondrial membrane (OMM) are able to activate various xenobiotics and stimulate the production of reactive oxygen species and the opening of the mitochondrial permeability transition pore. However, the role of these systems in the cell damage by xenobiotics and chemotherapeutic drugs is poorly understood because the methods for the selective assessment of their activity have not been elaborated and specific inhibitors are unknown. Here we propose a method for the semiquantitative assessment of the activity of NAD(P)H oxidoreductases of the OMM in intact and permeabilized cells that is based on the flow cytometry detection of dimethylbiacridene, a fluorescent product of two-electron reduction of lucigenin. The method uses the structural feature of mitochondrial organization: the proximity of the sites of one-electron reduction of lucigenin to cation radical (NAD(P)H oxidoreductases of the OMM) to the sites of its subsequent oxidation (cytochrome c oxidase). The inhibition of cytochrome c oxidase by cyanide selectively activates the dimethylbiacridene formation by oxidoreductases of the OMM but not by other cellular oxidoreductases. The proposed protocol allows one to assess the lucigenin reductase (two-electron) activity of NAD(P)H oxidoreductases of the OMM and to compare it with the activity of other cellular systems that can be used for the analysis of the role of these systems in the cell damage by xenobiotics and antitumor drugs.


Assuntos
Citometria de Fluxo/métodos , Membranas Mitocondriais/enzimologia , NADPH Oxidases/metabolismo , Acridinas/química , Animais , Antineoplásicos/farmacologia , Dano ao DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Substâncias Luminescentes/química , Masculino , NAD/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Xenobióticos/farmacologia
14.
Chem Res Toxicol ; 22(3): 565-73, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19193189

RESUMO

A novel mycotoxin named acrebol, consisting of two closely similar peptaibols (1726 and 1740 Da), was isolated from an indoor strain of the mitosporic ascomycete fungus Acremonium exuviarum. This paper describes the unique mitochondrial toxicity of acrebol, not earlier described for any peptaibol. Acrebol inhibited complex III of the respiratory chain of isolated rat liver mitochondria (1 mg of protein mL(-1)) with an IC(50) of approximately 80 ng mL(-1) (50 nM) after a short preincubation, and 350 ng mL(-1) caused immediate and complete inhibition. Acrebol thus is a complex III inhibitor almost as potent as antimycin A and myxothiazol but completely different in structure. Similarly to myxothiazol but in contrast to antimycin A, acrebol decreased the level of mitochondrial superoxide anion detectable by chemiluminescent probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one. Unlike other peptaibols, acrebol in toxic concentrations did not increase the ionic and solute permeability of membranes of isolated rat liver mitochondria, did not induce disturbance of the ionic homeostasis or the osmotic balance of mitochondria, and did not release apoptogenic proteins like cytochrome c from the intermembrane space of mitochondria. In boar spermatozoa, acrebol inhibited the respiratory chain and caused ATP depletion by activation of the oligomycin-sensitive F(0)F(1)-ATPase, which resulted in the inhibition of the progressive movement. In mouse insulinoma MIN-6 cells, whose energy supply solely depends on oxidative phosphorylation, acrebol induced necrosis-like death. The pathophysiological relevance of these findings is discussed.


Assuntos
Acremonium/química , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Micotoxinas/toxicidade , Peptaibols/toxicidade , Animais , Antimicina A/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Ratos
15.
Free Radic Biol Med ; 44(4): 646-56, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18053818

RESUMO

The participation of reactive oxygen species (ROS) in the regulation of mitochondrial permeability transition pore (mPTP) opening by the redox-cycling compounds menadione and lucigenin was explored. The level of ROS was modulated by antioxidants, anoxia, and switching the sites of the reduction of redox cyclers, the dehydrogenases of the inner and outer mitochondrial membranes. We found that the reduction of both lucigenin and menadione in the outer mitochondrial membrane caused a strong production of ROS. However, mPTP opening was accelerated only in the presence of the cationic acceptor lucigenin. The antioxidants and scavengers of ROS that considerably decreased the level of ROS in mitochondria did not prevent or delay the mPTP opening. If the transmembrane potential under anoxia was supported by exogenous ATP or ferricyanide, the permeabilization of mitochondrial membranes by menadione or lucigenin was the same as under normoxia or even more pronounced. Under anoxia, the lucigenin-dependent permeabilization of membranes was less sensitive to mPTP antagonists than under normoxia. We conclude that the opening of the mPTP by redox cyclers may be independent of ROS and is due to the direct oxidation of mitochondrial pyridine nucleotides by menadione and the modification of critical thiols of the mPTP by the cation radical of lucigenin.


Assuntos
Permeabilidade da Membrana Celular , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acridinas/farmacologia , Animais , Glutationa/metabolismo , Hipóxia/metabolismo , Masculino , Dilatação Mitocondrial , NAD/fisiologia , Oxirredução , Ratos , Ratos Wistar , Vitamina K 3/farmacologia
16.
Biochem Pharmacol ; 74(4): 545-56, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17586474

RESUMO

The role of NAD(P)H-dependent oxidoreductases of the outer mitochondrial membrane (OMM) in the activation of lipophilic cationic dyes is poorly understood. In the present study we compared the rates of production of reactive oxygen species (ROS) and mitochondriotoxic effects of the redox-cycling lipophilic cationic dye lucigenin upon its activation by the respiratory chain and NAD(P)H-dependent oxidoreductases of the OMM. We found that, only in the presence of external NADH and NADPH, which are unable to penetrate the inner membrane, lucigenin stimulated a massive superoxide production and a fast permeabilization of mitochondrial membranes. The permeabilization was biphasic. The first, cyclosporin A-insensitive and Ca(2+)-independent phase was characterized by increased permeability of the inner mitochondrial membrane to solutes with molecular masses of

Assuntos
Acridinas/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Acridinas/química , Acridinas/metabolismo , Animais , Antifúngicos/química , Antifúngicos/classificação , Antifúngicos/farmacologia , Ácido Bongcréquico/farmacologia , Catalase/metabolismo , Cátions , Cromanos/farmacologia , Cianetos/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Sequestradores de Radicais Livres/classificação , Sequestradores de Radicais Livres/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Substâncias Luminescentes/química , Substâncias Luminescentes/metabolismo , Substâncias Luminescentes/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
17.
Biochem Pharmacol ; 65(1): 43-9, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12473377

RESUMO

Dihydrolipoic acid (DHLA) has been found to stimulate the Ca(2+)-induced mitochondrial permeability transition (MPT) in rat liver mitochondria (RLM) [Biochem. Mol. Biol. Int. 44 (1998) 127] which could be due to its prooxidant properties. We therefore investigated whether DHLA stimulated superoxide anion (O(2)(.-)) generation in RLM and in bovine heart submitochondrial particles (SMP). In RLM DHLA caused a concentration-dependent O(2)(.-) generation assayed by lucigenin chemiluminiscence. The stimulation was seen with the lowest concentrations of DHLA (5 microM) with pyruvate as the respiratory substrate, with 2-oxoglutarate or especially succinate the stimulation was less pronounced. Stimulation of O(2)(.-) production by DHLA was also observed in bovine heart SMP using an electron spin-trapping technique. Radical scavengers (butylhydroxytoluene and TEMPO) decreased O(2)(.-) generation induced by DHLA and inhibited MPT. Slight reduction of the mitochondrial membrane potential by a small amount of a protonophorous uncoupling agent also delayed the DHLA-induced MPT. These data indicate that the stimulation of MPT by DHLA is due to DHLA-derived prooxidants, i.e. stimulated production of O(2)(.-) and possibly other free radicals.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/farmacologia , Animais , Bovinos , Interações Medicamentosas , Sequestradores de Radicais Livres/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Permeabilidade , Ratos
18.
Biosci Rep ; 23(4): 187-97, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14748539

RESUMO

The confluence-dependent resistance of human larynx carcinoma HEp-2 cells to hydrogen peroxide and a new antitumor drug based on the combination of vitamins C and B12b was studied. It was found that this resistance in growing cells is suppressed by the disruption of intercellular contacts by EGTA and is related neither to the activity of P-glycoprotein nor to the content of intracellular glutathione and the activities of glutathione S-transferases, glutathione peroxidase and glutathionine reductase. Here we showed that the level of expression of the small heat shock protein hsp27, which is known to protect cells from a variety of stresses associated with apoptosis, in growing confluent cells both in the presence and absence of the vitamins B12b and C is much higher (about 20-25 times) than in non-confluent cells. Taken together, the results suggest that the confluence-dependent resistance of cells to the combination of vitamins C and B12b and to hydrogen peroxide is mediated by hsp27 overexpression, which is activated via cell-cell adhesion.


Assuntos
Carcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas de Choque Térmico/fisiologia , Neoplasias Laríngeas/metabolismo , Proteínas de Neoplasias/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Divisão Celular/efeitos dos fármacos , Ácido Egtázico/farmacologia , Glutationa/metabolismo , Proteínas de Choque Térmico HSP27 , Humanos , Peróxido de Hidrogênio/farmacologia , Hidroxocobalamina/farmacologia , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/patologia , Chaperonas Moleculares , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...